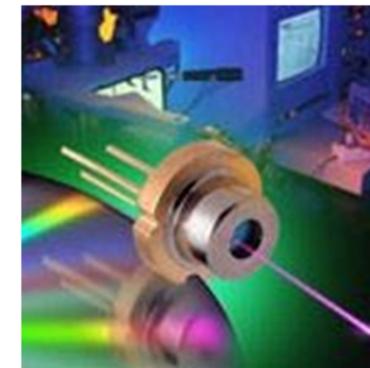


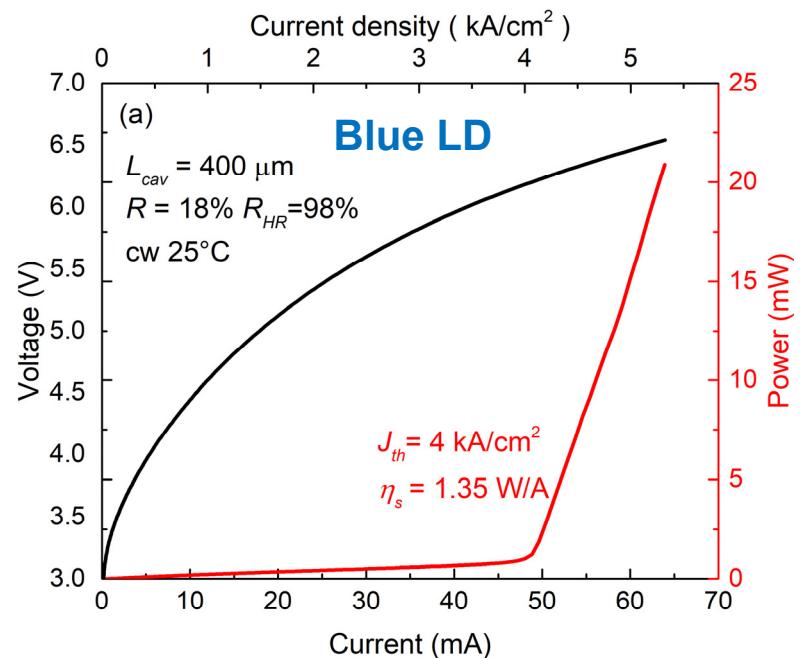
Lecture 12 – 14/05/2025

Laser diodes

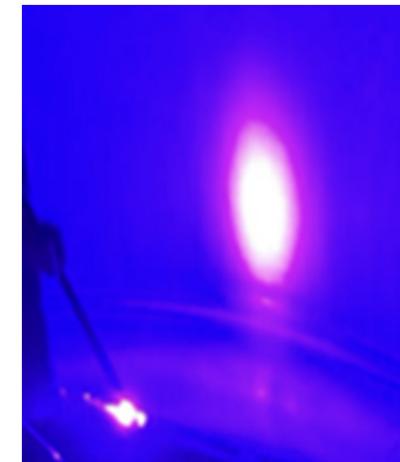
- Generalities
- Electrical injection
- Material gain: bulk and QW cases
- Laser oscillations
- Output power



Laser diodes



Far-field pattern

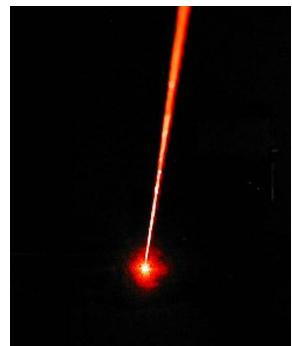


Laser: a clear threshold is observed in the L - I curve (+ far-field pattern)

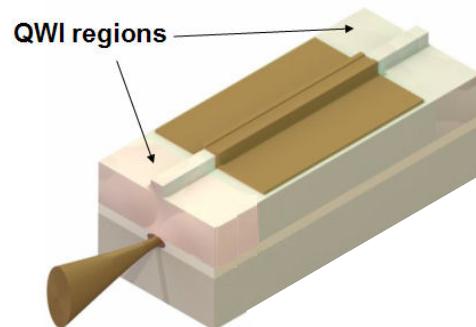
⇒ Light amplification

Light Amplification by Stimulated Emission of Radiation

Semiconductors: a brief overview

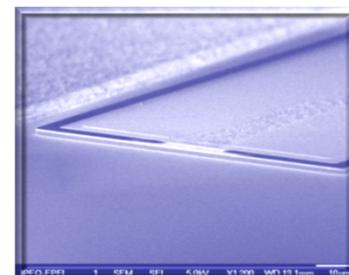
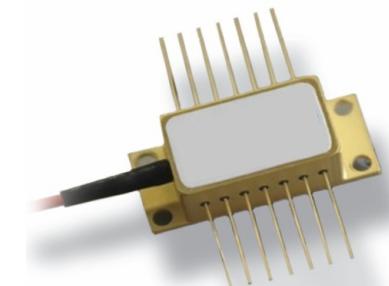


1970
1st laser diode
 $\lambda \sim 780$ nm
 $J_{thr} \sim 4.3$ kA/cm²
Ioffe, Russia



1980's

GaAs
based
optoelectronics



2000

CD, DVD, Telecom

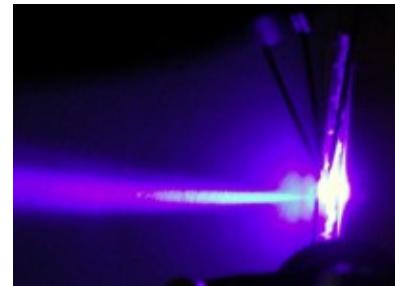
BUT light emission limited to the **Red** and **IR**

Semiconductors: a brief overview

1993

1990's

GaN
short-wavelength
optoelectronics

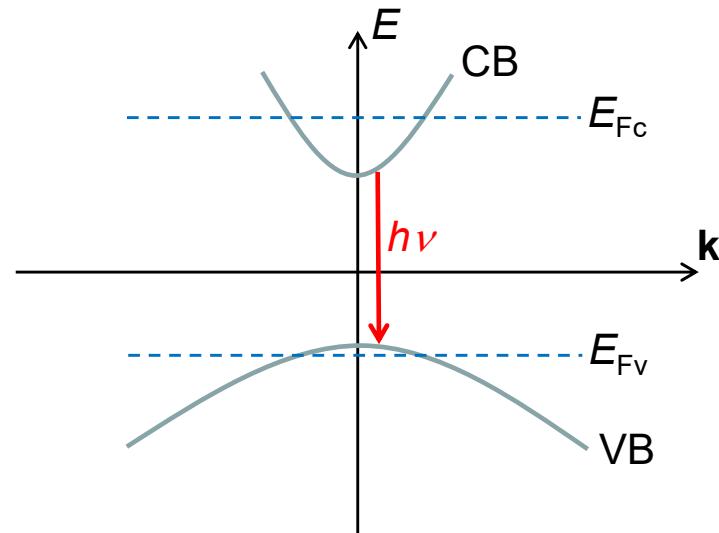


2003

Demonstration of reliable (i.e., long lifetime) green semiconductor laser diodes with a high production yield on the way (available from Nichia. Inc.)!

Electrical injection

- Both the valence and the conduction bands get more and more filled upon increasing current injection
- The carrier populations are described by the quasi-Fermi levels E_{Fc} and E_{Fv}



$$f_c(E) = \frac{1}{\exp\left(\frac{E - E_{Fc}}{k_B T}\right) + 1}$$

$$f_v(E) = \frac{1}{\exp\left(\frac{E - E_{Fv}}{k_B T}\right) + 1}$$

Note that here $f_v(E)$ describes the evolution of the electron population in the valence band!

Electrical injection

Different paths for electron-hole recombinations

- Non-radiative
- Spontaneous
- Auger
- Stimulated

$$A_{nr}n$$

$$Bn^2$$

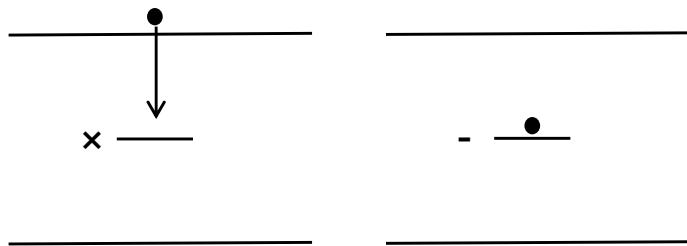
B bimol. coeff. $\sim 10^{-12}$ - $10^{-10} \text{ cm}^3\text{s}^{-1}$

$$Cn^3$$

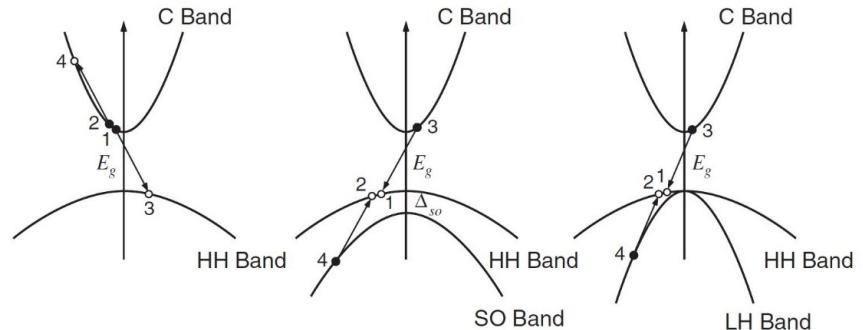
$$R_{st}s$$

with $R_{st} = -R_{abs}$ and s the density of stimulated photons

Stimulated recombination rate



Shockley-Read-Hall
recombinations



Auger
recombinations

Electrical injection

Below threshold – spontaneous emission regime ($s = 0$)

$$R_{\text{tot}} V (= Sd) = J/q \quad S \Rightarrow R_{\text{tot}} = J/(qd) = A_{\text{nr}}n + Bn^2 + Cn^3$$

d = active region thickness

$$1/\tau_{\text{nr}} = A_{\text{nr}} + Cn^2$$

Non radiative recombinations

$$1/\tau_r = Bn$$

Radiative recombinations

$$\text{with } 1/\tau_{\text{tot}} = 1/\tau_r + 1/\tau_{\text{nr}}$$

Finally $R_{\text{tot}} = (1/\tau_{\text{nr}} + 1/\tau_r)n = J/(qd)$ and $n = J\tau_{\text{tot}}/(qd)$

One recalls that the internal quantum efficiency (IQE) is given by

$$\eta_i = \frac{\tau_{\text{tot}}}{\tau_r} = \frac{\tau_{\text{nr}}}{\tau_{\text{nr}} + \tau_r} = \frac{Bn}{A_{\text{nr}} + Bn + Cn^2}$$

and the photon flux is given by $\phi = \eta_{\text{inj}} \eta_i J/q$

Often taken equal to 1 (assumption we make from now on)!

Electrical injection

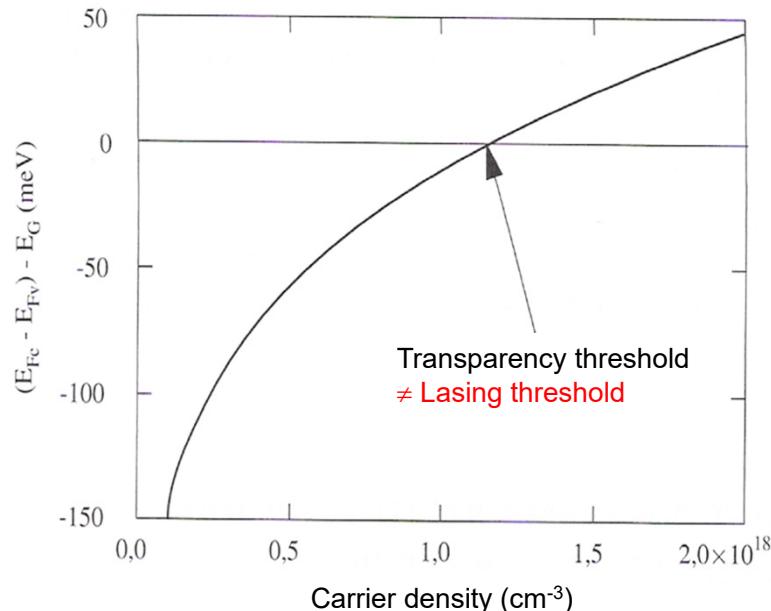
$$n = J\tau_{\text{tot}}/qd$$

A few remarks:

- *The effective recombination lifetime τ_{tot} depends on the carrier density*
- *The Auger recombination term is significant only at high injection*
- *The carrier density depends on the active region thickness*

- homojunction: $d = L_{Dn} + L_{Dp}$ (1-10 μm)
- heterojunction: $d = 100 \text{ nm}$
- quantum well: $d = 1-10 \text{ nm}$

Stimulated emission



The material becomes transparent when

$$E_{F_c} - E_{F_v} = E_g \quad \text{True for a bulk SC!}$$

Minimum requirement to fulfill the Bernard-Duraffourg condition (cf. fall semester, **Lecture 12**)

Transparency threshold in GaAs

$d = 1 \mu\text{m} \Rightarrow J_{tr} \sim 16 \text{ kA/cm}^2$ bulk (1960)

$d = 100 \text{ nm} \Rightarrow J_{tr} \sim 1.6 \text{ kA/cm}^2$ heterojunction (1970) (\equiv double heterostructure (DHS))

$d = 10 \text{ nm} \Rightarrow J_{tr} \sim 160 \text{ A/cm}^2$ quantum well (1980) (\equiv separate confinement heterostructure (SCH))

Stimulated emission

n increases with the current

$$n = \int_{E_c}^{\infty} \rho_c(E) \frac{1}{\exp\left(\frac{E - E_{Fc}}{k_B T}\right) + 1} dE \quad E_{Fc} (E_{Fv}) \uparrow$$

and the absorption is given by

$$\alpha(\omega) = -\gamma(\omega) = \alpha_0(\omega) [f_v(\hbar\omega) - f_c(\hbar\omega)] \quad \text{where } \gamma \text{ is the gain}$$

When α becomes negative, stimulated emission becomes possible (but one extra condition must be fulfilled for achieving lasing)

$$f_c(\hbar\omega) \geq f_v(\hbar\omega) \Rightarrow E_{Fc} - E_{Fv} \geq \hbar\omega \geq E_g$$

Bernard-Duraffourg condition

Light gets amplified only once the **Bernard-Duraffourg condition** is fulfilled, i.e., when the semiconducting medium exhibits **optical gain**!

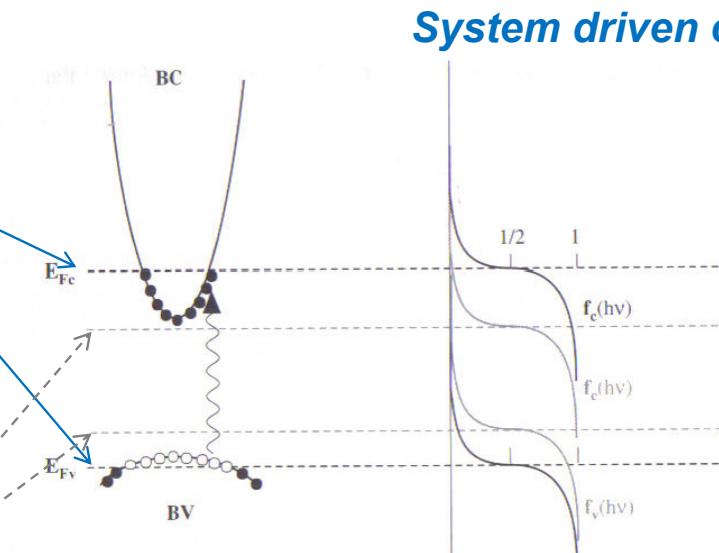
⇒ Necessary condition for the achievement of lasing in a semiconducting medium (⚠ but it is not a sufficient one)

Stimulated emission

$$E_{Fc} - E_{Fv} > \hbar\omega > E_g$$

- Strong excitation
 - ✓ At least one of the bands is degenerate
 - ✓ All the states satisfying the *B-D* inequality are “fully occupied”, i.e. the SC is transparent for those λ !

- Weak or moderate excitation
 - ✓ None of the bands are degenerate, i.e. $n < N_C$ and $p < N_V \Rightarrow$ use of Boltzmann approximation
 - ✓ \Rightarrow photon absorption is still at play since there are available states in the CB where e^- from the VB can be promoted

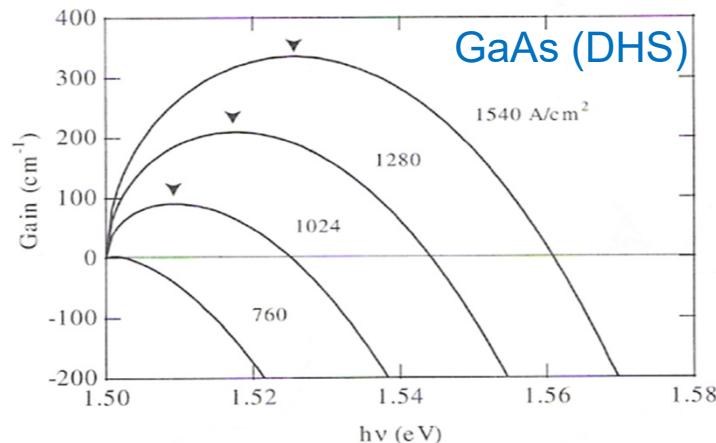
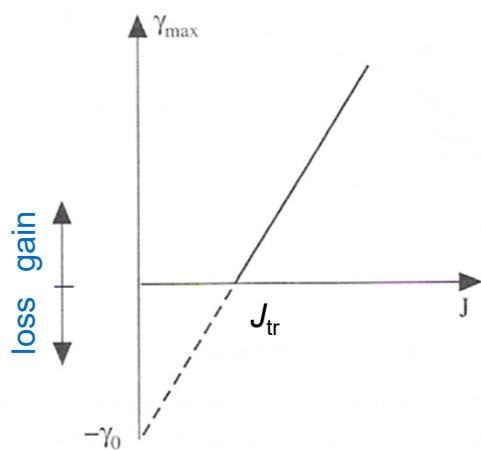


System driven out of equilibrium

Cf. slide 17 of Lecture 9
and related comments!

Material gain (bulk case)

Gain curves



In a semiconductor, the material gain can also be expressed as

$$\gamma(h\nu) = \frac{\lambda^2}{8\pi\tau_r} \rho_j(h\nu) [f_c(h\nu) - f_v(h\nu)]$$

JDOS

Increase and broadening of the gain region with the current

In a bulk system, the maximum gain varies linearly with the carrier density n above the transparency carrier density n_{tr}

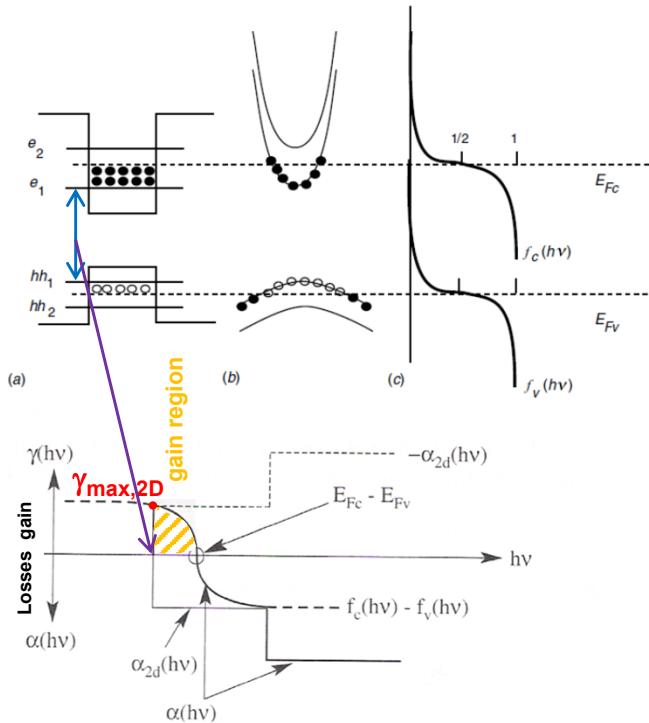
$$\gamma_{max} = \gamma_0 \left(\frac{n}{n_{tr}} - 1 \right)$$

$$\Rightarrow \gamma_{max} \approx \gamma_0 \left(\frac{J}{J_{tr}} - 1 \right)$$

knowing that $J_{tr} = \frac{qd}{\tau_{tot@tr}} n_{tr} = \frac{qd}{\eta_i \tau_{r@tr}} n_{tr}$

⚠ Keep in mind the nonlinear relationship between the current density and the carrier density (⇒ ABC-model)!

Material gain (QW case)



Cf. Lecture 12, fall semester for 3D case!
+
Rosencher-Vinter's book

Note: The zero of energy is taken at the top of the valence band

Case of quantum wells:

Quasi-Fermi levels derived from

$$n = \int_{\substack{e_1' = E_g + e_1 \\ -h h_1}}^{\infty} \rho_{2D}^e(E) f_c^1(E) dE$$

$$p = \int_{-\infty}^{\infty} \rho_{2D}^{hh}(E) (1 - f_v^1(E)) dE$$

Note: only the ground states are populated at the transparency threshold

Material gain for the e_1 - hh_1 transition

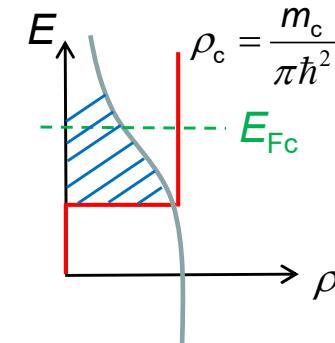
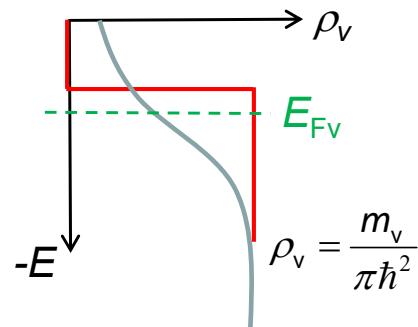
$$\gamma(hv) = \alpha_{2D} \left[f_c^1(hv) - f_v^1(hv) \right] \theta(hv - E_g - e_1 - h h_1)$$

$$\text{with } \alpha_{2D}(\hbar\omega) = \frac{\pi q^2 x_{vc}^2 \omega}{\epsilon_0 n_{op} c d} \rho_{2D}(\hbar\omega) = \frac{2\pi q^2 x_{vc}^2 m_r^*}{\epsilon_0 \hbar^2 n_{op} \lambda d}$$

2D-JDOS

Material gain (QW case)

Quantum well:



$$n = \int_{e'_1 = E_g + e_1}^{+\infty} \rho_c \frac{1}{\exp\left(\frac{E - E_{Fc}}{k_B T}\right) + 1} dE \Rightarrow n = n_c \ln\left(1 + \exp\left(\frac{E_{Fc} - e'_1}{k_B T}\right)\right)$$

$$n_c = \rho_c k_B T$$

$$p = \int_{-\infty}^{-hh_1} \rho_v \frac{1}{\exp\left(\frac{E_{Fv} - E}{k_B T}\right) + 1} dE \Rightarrow p = p_c \ln\left(1 + \exp\left(-\frac{hh_1 + E_{Fv}}{k_B T}\right)\right)$$

$$p_c = \rho_v k_B T \quad \text{and} \quad n_c/p_c = \rho_c/\rho_v = m_c/m_v = 1/R$$

n_c and p_c are the 2D critical densities

Note: The zero of energy is taken at the top of the valence band!

⚠ not to be confused with the reflectivity coefficient!

Material gain (QW case)

Quantum well:

The material gain exhibits its maximum at the absorption edge due to the staircase profile of the 2D-DOS

Maximum gain for $\hbar\omega = \Delta E = e'_1 + hh_1 \Rightarrow E_c(\hbar\omega) = e'_1$ and $E_v(\hbar\omega) = -hh_1$

$$\Rightarrow \gamma_{\max} = \gamma_0 (f_c(\Delta E) - f_v(\Delta E)) = \gamma_0 \left(\frac{1}{\exp\left(\frac{e'_1 - E_{F_c}}{k_B T}\right) + 1} - \frac{1}{\exp\left(-\frac{hh_1 + E_{F_v}}{k_B T}\right) + 1} \right) \text{ with } \gamma_0 = \alpha_{2D}$$

$$E_{F_c} - e'_1 = k_B T \ln(e^{n/n_c} - 1)$$

$$- (hh_1 + E_{F_v}) = k_B T \ln(e^{p/p_c} - 1)$$

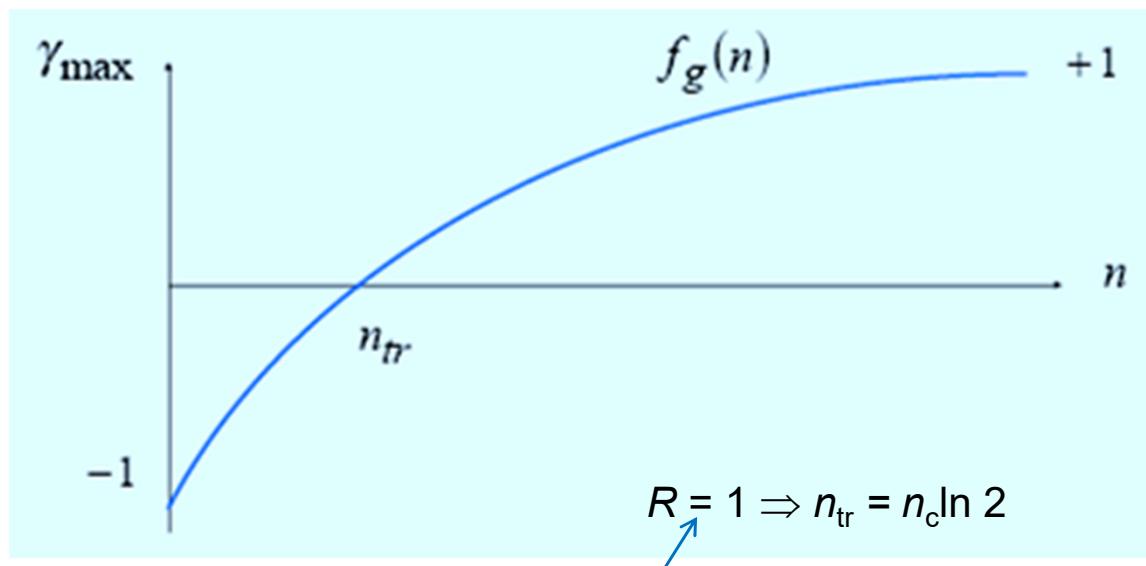
$$\gamma_{\max} = \gamma_0 f_g(n) \quad \text{with} \quad f_g(n) = 1 - e^{-n/n_c} - e^{-n/p_c} \quad \text{and} \quad n = p \quad \text{due to electrical neutrality}$$

$$f_g(n) = 1 - e^{-n/n_c} - e^{-n/Rn_c} \quad \text{with} \quad R = \frac{m_v}{m_c}$$

Material gain (QW case)

Quantum well:

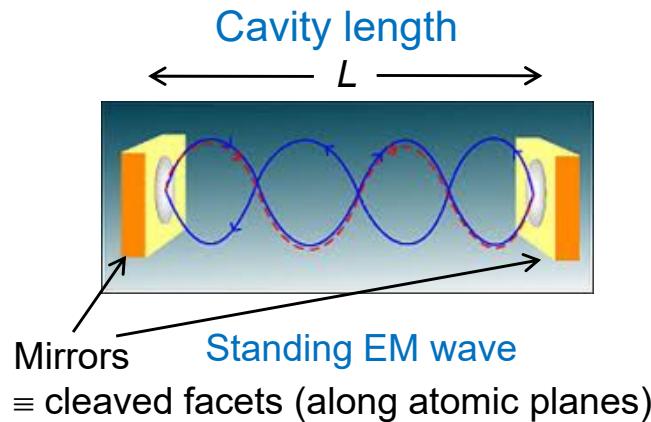
$$\text{Transparency when } f_g(n) = 1 - e^{-n/n_c} - e^{-n/Rn_c} > 0$$



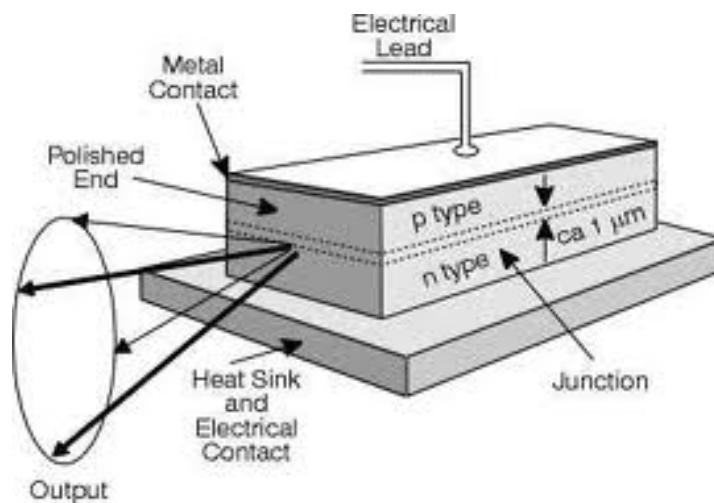
$$R = 1 \Rightarrow n_{tr} = n_c \ln 2$$

Fictitious but illustrative example!

Edge-emitting laser diode



Resonant cavity \Rightarrow optical feedback



$$R_m = (n_{sc}-1)^2 / (n_{sc}+1)^2$$

E.g., for GaAs, $R_m = 0.32$

Laser oscillations

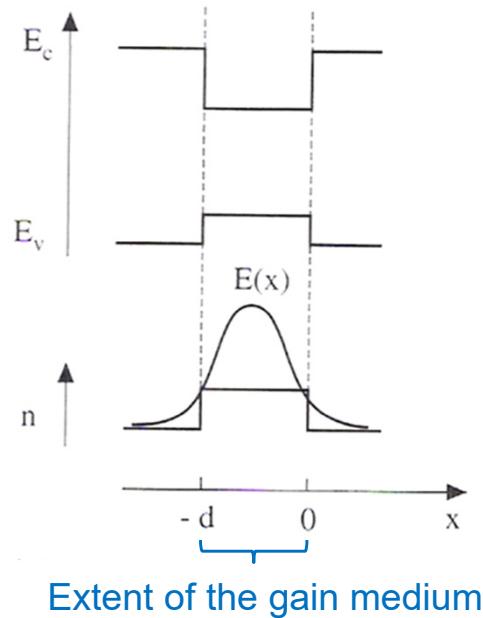
Condition for lasing:

$$\text{Modal gain} = \text{losses} \Rightarrow \Gamma \gamma_{\text{thr}}(h\nu) = \alpha_p + \frac{1}{2L} \times \ln(1/R_1 R_2)$$

Modal gain
= confinement factor \times material gain

Parasitic or intrinsic losses
Mirror losses

Optical waveguide:



Overlap between optical mode and active region (gain medium, e.g., QWs)

The confinement factor (Γ) is given by:

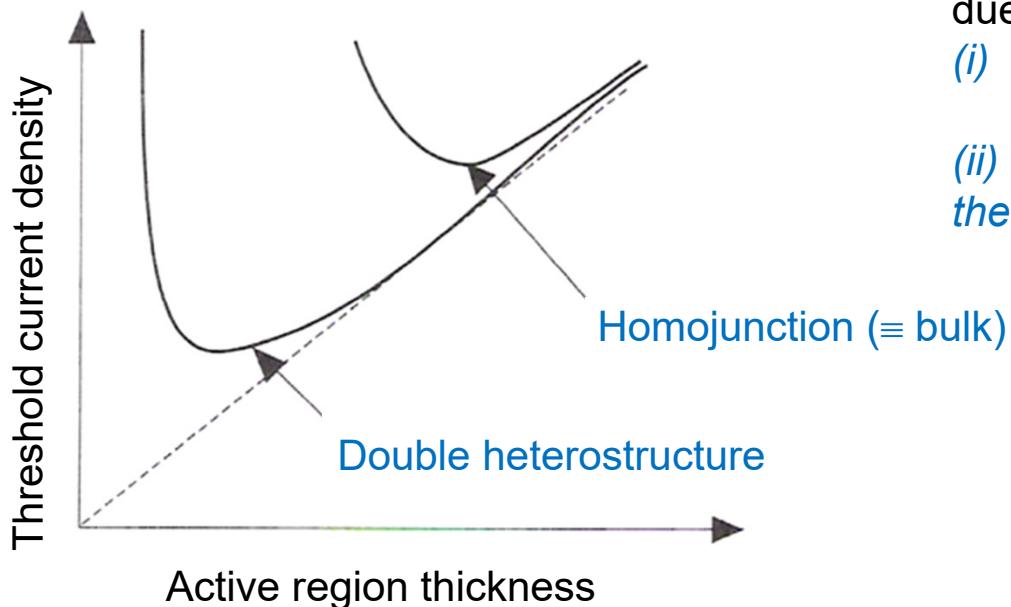
$$\Gamma = \frac{\int_{-d}^{0} |E(x)|^2 dx}{\int_{-\infty}^{+\infty} |E(x)|^2 dx}$$

For a QW-based LD (SCH), $\Gamma = 0.5\text{-}5\%$
For a double heterostructure (DHS), $\Gamma \sim 1$ ($d \approx 100$ nm)

Laser oscillations

Condition for lasing:

$$\Gamma \gamma_{\text{thr}}(h\nu) = \alpha_p + 1/(2L) \times \ln(1/R_1R_2)$$



Lower J_{thr} of DHS-LDs vs. homojunction ones due to:

- (i) *better confinement of carriers*
- (ii) *better overlap between the gain region and the EM field*

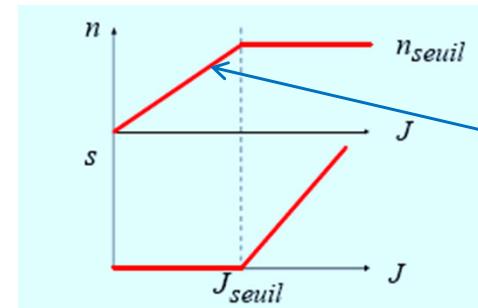
Output power

1. Below the transparency threshold: weak contribution due to spontaneous emission emitted through the outcoupling mirror/facet
2. Above the transparency threshold: amplified spontaneous emission (ASE),
 \Rightarrow *superluminescence*
3. When $\Gamma\gamma$ (modal gain) equals the losses: laser oscillations start

Important: once the lasing threshold is reached, the carrier density is clamped (constant)

each newly added electron gives rise to 1 stimulated photon (x IQE)

The feedback effect causes the carrier density to clamp in order to keep the gain at its threshold value!



Approximate description since n is not a linear function of J !

Output power

Equation

$$J/(qd) = A_{nr}n + Bn^2 + Cn^3 + R_{st}s$$

$n = n_{thr}$ above threshold:

$$J/(qd) = n_{thr}/\tau_{thr} + R_{st}s$$

$$J_{thr} = q d n_{thr}/\tau_{thr} (s = 0)$$

$$\Rightarrow R_{st}s = (J - J_{thr})/qd$$

R_{st} : stimulated emission rate
 s : density of stimulated photons

The stimulated emission rate is given by $R_{st} = \gamma_{thr} c/n_{op} = 1/(\Gamma \tau_{cav})$ (cf. rate eqs. in Lectures 13 & 14)

Finally, the density of photons inside the cavity is given by:

$$s = (n_{op}/(qd\gamma_{thr}c))(J - J_{thr}),$$

\Rightarrow all the current above threshold is converted in stimulated emission!

In practice, one must also account for nonradiative channels (i.e., the IQE is included)

$$s = \eta_i(n_{op}/(qd\gamma_{thr}c))(J - J_{thr})$$

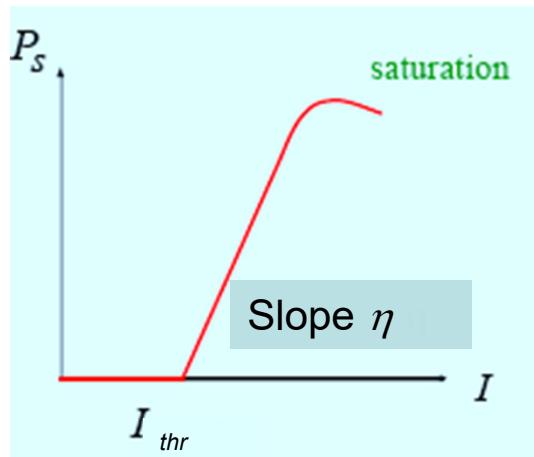
Output power

$$\tau_{\text{cav}} = n_{\text{op}}/(\Gamma \gamma_{\text{thr}} c) \Rightarrow s = \eta_i (\Gamma \tau_{\text{cav}}/qd)(J-J_{\text{thr}}) \quad \gamma_{\text{thr}} = (\alpha_m + \alpha_p)/\Gamma \quad c' = c/n_{\text{op}}$$

$$P_s = \underbrace{(\text{Photon energy})}_{h\nu} \underbrace{(\text{Photon density})}_{\eta_i \frac{\Gamma \tau_{\text{cav}}}{qd} (J-J_{\text{thr}})} \underbrace{(\text{Effective mode volume})}_{Sd/\Gamma} \underbrace{(\text{Photon escape rate})}_{c' \alpha_m}, \quad I = JS$$

$$P_s = \eta_i \frac{\alpha_m}{\alpha_p + \alpha_m} \frac{h\nu}{q} (I - I_{\text{thr}}) \Rightarrow P_s = \eta \frac{h\nu}{q} (I - I_{\text{thr}})$$

where we assumed that the injection efficiency = unity



Wall plug efficiency (WPE)

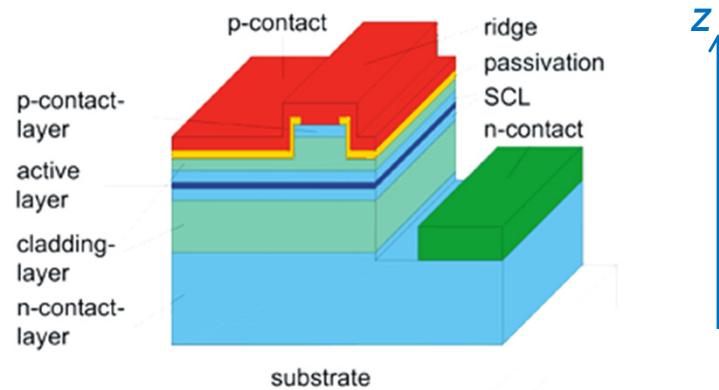
$$P_{\text{el}} = V \times I \approx h\nu/q \times I \text{ (assuming cold carrier injection)}$$

$$P_s/P_{\text{el}} = \text{WPE} \approx \eta (1 - I_{\text{thr}}/I)$$

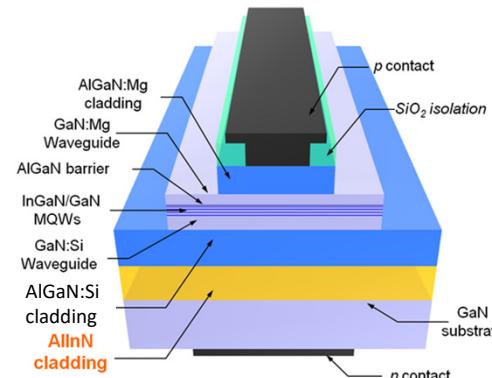
External quantum efficiency

> 30% for semiconductor lasers
1% for gas lasers

Edge-emitting laser diode

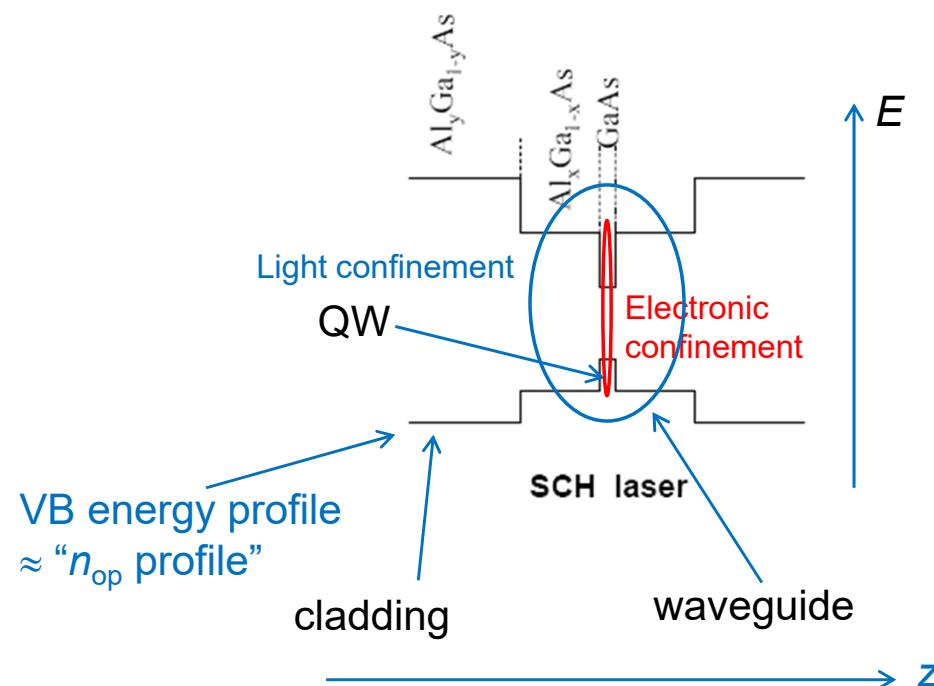


0.2-1 μm x 2-5 μm x 200-1000 μm



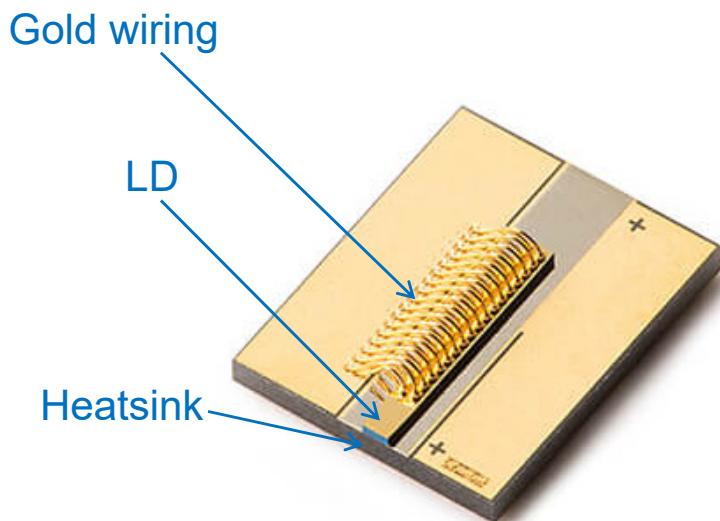
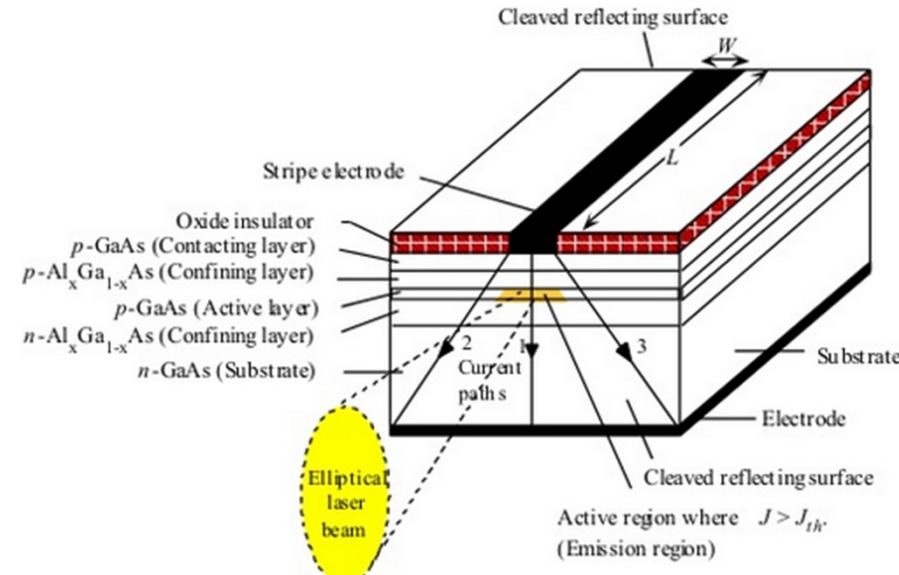
Index-guided LD structures (600 x 2 μm^2)

“LED” + cavity (mirrors)



SCH: separate confinement heterostructure

Edge-emitting laser diode



II-VI Inc. high output power (12 W, cw) near-infrared single mode edge emitting laser diode (single QW)

Edge-emitting laser diode

Internal efficiency

The output power is given by:

$$P_s = \eta(h\nu/q)(I - I_{\text{thr}}) \quad \text{with } \eta = \eta_i \alpha_m / (\alpha_m + \alpha_p) = \eta_i \ln(1/R_m) / [\alpha_p L + \ln(1/R_m)]$$

with R_m the mirror reflectivity (taken identical for both sides)

External differential quantum efficiency:

$$\eta_d = \left(\frac{dP_s}{dI} \right) \left(\frac{q}{h\nu} \right) \quad (I > I_{\text{thr}})$$

$$\text{Thus } \eta_d = \frac{\eta_i}{\left[1 + \alpha_p L / \ln\left(\frac{1}{R_m}\right) \right]}$$

Internal quantum efficiency

